Files
photoprism/internal/ai/classify/model_test.go
raystlin adc4dc0f74 Added new parameters to model input.
New parameters have been added to define the input of the models:
* ResizeOperation: by default center-crop was being performed, now it is
  configurable.
* InputOrder: by default RGB was being used as the order for the array
  values of the input tensor, now it can be configured.
* InputInterval has been changed to InputIntervals (an slice). This
  means that every channel can have its own interval conversion.
* InputInterval can define now stddev and mean, because sometimes
  instead of adjusting the interval, the stddev and mean of the training
data should be use.
2025-07-15 13:31:31 +00:00

266 lines
6.0 KiB
Go

package classify
import (
"os"
"sync"
"testing"
"github.com/stretchr/testify/assert"
"github.com/photoprism/photoprism/pkg/fs"
)
var assetsPath = fs.Abs("../../../assets")
var modelPath = assetsPath + "/nasnet"
var examplesPath = assetsPath + "/examples"
var once sync.Once
var testInstance *Model
func NewModelTest(t *testing.T) *Model {
once.Do(func() {
testInstance = NewNasnet(assetsPath, false)
if err := testInstance.loadModel(); err != nil {
t.Fatal(err)
}
})
return testInstance
}
func TestModel_LabelsFromFile(t *testing.T) {
t.Run("chameleon_lime.jpg", func(t *testing.T) {
tensorFlow := NewModelTest(t)
result, err := tensorFlow.File(examplesPath+"/chameleon_lime.jpg", 10)
assert.NoError(t, err)
assert.NotNil(t, result)
assert.IsType(t, Labels{}, result)
assert.Equal(t, 1, len(result))
if len(result) > 0 {
t.Logf("result: %#v", result[0])
assert.Equal(t, "chameleon", result[0].Name)
assert.Equal(t, 7, result[0].Uncertainty)
}
})
t.Run("cat_224.jpeg", func(t *testing.T) {
tensorFlow := NewModelTest(t)
result, err := tensorFlow.File(examplesPath+"/cat_224.jpeg", 10)
assert.NoError(t, err)
assert.NotNil(t, result)
assert.IsType(t, Labels{}, result)
assert.Equal(t, 1, len(result))
if len(result) > 0 {
assert.Equal(t, "cat", result[0].Name)
assert.Equal(t, 59, result[0].Uncertainty)
}
})
t.Run("cat_720.jpeg", func(t *testing.T) {
tensorFlow := NewModelTest(t)
result, err := tensorFlow.File(examplesPath+"/cat_720.jpeg", 10)
assert.NoError(t, err)
assert.NotNil(t, result)
assert.IsType(t, Labels{}, result)
assert.Equal(t, 3, len(result))
// t.Logf("labels: %#v", result)
if len(result) > 0 {
assert.Equal(t, "cat", result[0].Name)
assert.Equal(t, 60, result[0].Uncertainty)
}
})
t.Run("green.jpg", func(t *testing.T) {
tensorFlow := NewModelTest(t)
result, err := tensorFlow.File(examplesPath+"/green.jpg", 10)
t.Logf("labels: %#v", result)
assert.NoError(t, err)
assert.NotNil(t, result)
assert.IsType(t, Labels{}, result)
assert.Equal(t, 1, len(result))
if len(result) > 0 {
assert.Equal(t, "outdoor", result[0].Name)
assert.Equal(t, 70, result[0].Uncertainty)
}
})
t.Run("not existing file", func(t *testing.T) {
tensorFlow := NewModelTest(t)
result, err := tensorFlow.File(examplesPath+"/notexisting.jpg", 10)
assert.Contains(t, err.Error(), "no such file or directory")
assert.Empty(t, result)
})
t.Run("disabled true", func(t *testing.T) {
tensorFlow := NewNasnet(assetsPath, true)
result, err := tensorFlow.File(examplesPath+"/chameleon_lime.jpg", 10)
assert.Nil(t, err)
if err != nil {
t.Fatal(err)
}
assert.Nil(t, result)
assert.IsType(t, Labels{}, result)
assert.Equal(t, 0, len(result))
t.Log(result)
})
}
func TestModel_Run(t *testing.T) {
if testing.Short() {
t.Skip("skipping test in short mode.")
}
t.Run("chameleon_lime.jpg", func(t *testing.T) {
tensorFlow := NewModelTest(t)
if imageBuffer, err := os.ReadFile(examplesPath + "/chameleon_lime.jpg"); err != nil {
t.Error(err)
} else {
result, err := tensorFlow.Run(imageBuffer, 10)
t.Log(result)
assert.NotNil(t, result)
if err != nil {
t.Fatal(err)
}
assert.IsType(t, Labels{}, result)
assert.Equal(t, 1, len(result))
if len(result) > 0 {
assert.Equal(t, "chameleon", result[0].Name)
assert.Equal(t, 100-93, result[0].Uncertainty)
}
}
})
t.Run("dog_orange.jpg", func(t *testing.T) {
tensorFlow := NewModelTest(t)
if imageBuffer, err := os.ReadFile(examplesPath + "/dog_orange.jpg"); err != nil {
t.Error(err)
} else {
result, err := tensorFlow.Run(imageBuffer, 10)
t.Log(result)
assert.NotNil(t, result)
if err != nil {
t.Fatal(err)
}
assert.IsType(t, Labels{}, result)
assert.Equal(t, 1, len(result))
if len(result) > 0 {
assert.Equal(t, "dog", result[0].Name)
assert.Equal(t, 34, result[0].Uncertainty)
}
}
})
t.Run("Random.docx", func(t *testing.T) {
tensorFlow := NewModelTest(t)
if imageBuffer, err := os.ReadFile(examplesPath + "/Random.docx"); err != nil {
t.Error(err)
} else {
result, err := tensorFlow.Run(imageBuffer, 10)
assert.Empty(t, result)
assert.Error(t, err)
}
})
t.Run("6720px_white.jpg", func(t *testing.T) {
tensorFlow := NewModelTest(t)
if imageBuffer, err := os.ReadFile(examplesPath + "/6720px_white.jpg"); err != nil {
t.Error(err)
} else {
result, err := tensorFlow.Run(imageBuffer, 10)
if err != nil {
t.Fatal(err)
}
assert.Empty(t, result)
}
})
t.Run("disabled true", func(t *testing.T) {
tensorFlow := NewNasnet(assetsPath, true)
if imageBuffer, err := os.ReadFile(examplesPath + "/dog_orange.jpg"); err != nil {
t.Error(err)
} else {
result, err := tensorFlow.Run(imageBuffer, 10)
t.Log(result)
assert.Nil(t, result)
assert.Nil(t, err)
assert.IsType(t, Labels{}, result)
assert.Equal(t, 0, len(result))
}
})
}
func TestModel_LoadModel(t *testing.T) {
t.Run("model loaded", func(t *testing.T) {
tf := NewModelTest(t)
assert.True(t, tf.ModelLoaded())
})
t.Run("model path does not exist", func(t *testing.T) {
tensorFlow := NewNasnet(assetsPath+"foo", false)
err := tensorFlow.loadModel()
if err != nil {
assert.Contains(t, err.Error(), "Could not find SavedModel")
}
assert.Error(t, err)
})
}
func TestModel_BestLabels(t *testing.T) {
t.Run("labels not loaded", func(t *testing.T) {
tensorFlow := NewNasnet(assetsPath, false)
p := make([]float32, 1000)
p[666] = 0.5
result := tensorFlow.bestLabels(p, 10)
assert.Empty(t, result)
})
t.Run("labels loaded", func(t *testing.T) {
tensorFlow := NewNasnet(assetsPath, false)
if err := tensorFlow.loadLabels(modelPath); err != nil {
t.Fatal(err)
}
p := make([]float32, 1000)
p[8] = 0.7
p[1] = 0.5
result := tensorFlow.bestLabels(p, 10)
assert.Equal(t, "chicken", result[0].Name)
assert.Equal(t, "bird", result[0].Categories[0])
assert.Equal(t, "image", result[0].Source)
t.Log(result)
})
}