Files
photoprism/internal/ai/vision/label_normalizer_test.go
2025-10-29 17:21:12 +01:00

213 lines
5.8 KiB
Go

package vision
import (
"math"
"testing"
"github.com/photoprism/photoprism/internal/ai/classify"
"github.com/photoprism/photoprism/pkg/txt"
)
func TestCanonicalLabelFor(t *testing.T) {
meta, ok := canonicalLabelFor("Sea Lion")
if !ok {
t.Fatalf("expected canonical entry for sea lion")
}
if meta.Name != "Sea Lion" {
t.Fatalf("expected canonical name Sea Lion, got %q", meta.Name)
}
metaLower, ok := canonicalLabelFor("sea lion")
if !ok || metaLower.Name != "Sea Lion" {
t.Fatalf("expected lookup to be case-insensitive, got %v %q", ok, metaLower.Name)
}
}
func TestCanonicalLabelForUnknown(t *testing.T) {
if _, ok := canonicalLabelFor("unknown-label-xyz"); ok {
t.Fatalf("expected no canonical entry")
}
}
func TestAddCanonicalMappingAggregatesRules(t *testing.T) {
original := canonicalLabels
canonicalLabels = make(map[string]canonicalLabel, len(classify.Rules)*2)
defer func() { canonicalLabels = original }()
for key, rule := range classify.Rules {
canonicalName := rule.Label
if canonicalName == "" {
canonicalName = key
}
meta := canonicalLabel{
Name: txt.Title(canonicalName),
Priority: rule.Priority,
Categories: append([]string(nil), rule.Categories...),
Threshold: rule.Threshold,
hasRule: true,
}
addCanonicalMapping(key, meta)
addCanonicalMapping(canonicalName, meta)
}
labels := []string{"dog", "cat", "car", "drinks", "flower", "vehicle", "wine", "water", "zebra", "schipperke"}
for _, label := range labels {
slug := txt.Slug(label)
meta, ok := canonicalLabels[slug]
if !ok {
t.Fatalf("expected canonical metadata for %q", label)
}
t.Logf("%s: %#v", label, meta)
expectedPriority, expectedThreshold, hasThreshold := expectedCanonicalStats(t, label)
if meta.Priority != expectedPriority {
t.Fatalf("expected priority %d for %q, got %d", expectedPriority, label, meta.Priority)
}
if hasThreshold {
if diff := math.Abs(float64(meta.Threshold - expectedThreshold)); diff > 1e-6 {
t.Fatalf("expected threshold %.6f for %q, got %.6f", expectedThreshold, label, meta.Threshold)
}
} else if meta.Threshold != 0 {
t.Fatalf("expected zero threshold for %q, got %.6f", label, meta.Threshold)
}
}
}
func expectedCanonicalStats(t *testing.T, label string) (priority int, threshold float32, hasThreshold bool) {
t.Helper()
slug := txt.Slug(label)
foundPriority := false
var maxPriority int
var minThreshold float32
for key, rule := range classify.Rules {
canonicalName := rule.Label
if canonicalName == "" {
canonicalName = key
}
canonicalSlug := txt.Slug(canonicalName)
keySlug := txt.Slug(key)
if canonicalSlug != slug && keySlug != slug {
continue
}
if !foundPriority || rule.Priority > maxPriority {
maxPriority = rule.Priority
foundPriority = true
}
if rule.Threshold > 0 && (!hasThreshold || rule.Threshold < minThreshold) {
minThreshold = rule.Threshold
hasThreshold = true
}
}
if !foundPriority {
t.Fatalf("expected to find rules for canonical label %q", label)
}
return maxPriority, minThreshold, hasThreshold
}
func TestNormalizeLabelResult(t *testing.T) {
t.Run("Canonical", func(t *testing.T) {
label := LabelResult{Name: "sea lion", Confidence: 0.8, Topicality: 0.7}
normalizeLabelResult(&label)
if label.Name != "Sea Lion" {
t.Fatalf("expected canonical name, got %q", label.Name)
}
if label.Priority != PriorityFromTopicality(0.7) {
t.Fatalf("expected priority derived from topicality, got %d", label.Priority)
}
if len(label.Categories) == 0 {
t.Fatalf("expected categories to be set")
}
})
t.Run("Fallback", func(t *testing.T) {
label := LabelResult{Name: "kittens", Confidence: 0.2, Topicality: 0.25}
normalizeLabelResult(&label)
if label.Name == "" {
t.Fatalf("expected non-empty name")
}
if label.Priority == 0 {
t.Fatalf("expected priority to be derived from topicality")
}
})
t.Run("IgnoredThreshold", func(t *testing.T) {
label := LabelResult{Name: "background", Topicality: 0.9}
normalizeLabelResult(&label)
if label.Name != "" {
t.Fatalf("expected background to be ignored, got %q", label.Name)
}
})
t.Run("GlobalThreshold", func(t *testing.T) {
prev := Config.Thresholds.Confidence
Config.Thresholds.Confidence = 90
defer func() { Config.Thresholds.Confidence = prev }()
label := LabelResult{Name: "unknown label", Confidence: 0.2}
normalizeLabelResult(&label)
if label.Name != "" {
t.Fatalf("expected label to be dropped due to global Confidence threshold, got %q", label.Name)
}
})
t.Run("TopicalityThreshold", func(t *testing.T) {
prev := Config.Thresholds
Config.Thresholds.Topicality = 80
defer func() { Config.Thresholds = prev }()
label := LabelResult{Name: "low topicality", Confidence: 0.9, Topicality: 0.5}
normalizeLabelResult(&label)
if label.Name != "" {
t.Fatalf("expected label to be dropped due to Topicality threshold, got %q", label.Name)
}
})
t.Run("NSFWConfidenceClamp", func(t *testing.T) {
label := LabelResult{Name: "nsfw-high", Confidence: 0.9, Topicality: 0.9, NSFW: true, NSFWConfidence: 2.5}
normalizeLabelResult(&label)
if !label.NSFW {
t.Fatalf("expected label to remain NSFW")
}
if label.NSFWConfidence != 1 {
t.Fatalf("expected NSFW confidence to be clamped to 1, got %f", label.NSFWConfidence)
}
})
t.Run("NSFWBooleanWithoutConfidence", func(t *testing.T) {
label := LabelResult{Name: "nsfw-bool", Confidence: 0.9, Topicality: 0.9, NSFW: true}
normalizeLabelResult(&label)
if label.NSFWConfidence != 1 {
t.Fatalf("expected NSFW confidence to default to 1 when NSFW is true, got %f", label.NSFWConfidence)
}
})
t.Run("Apostrophe", func(t *testing.T) {
label := LabelResult{Name: "McDonald's", Confidence: 0.8, Topicality: 0.6}
normalizeLabelResult(&label)
if label.Name != "McDonald's" {
t.Fatalf("expected label to retain apostrophe, got %q", label.Name)
}
})
}