mirror of
https://github.com/photoprism/photoprism.git
synced 2025-12-11 16:24:11 +01:00
157 lines
4.6 KiB
Go
157 lines
4.6 KiB
Go
package tensorflow
|
|
|
|
import (
|
|
"fmt"
|
|
"path/filepath"
|
|
"strconv"
|
|
"strings"
|
|
|
|
tf "github.com/wamuir/graft/tensorflow"
|
|
|
|
"github.com/photoprism/photoprism/pkg/clean"
|
|
)
|
|
|
|
// SavedModel loads a saved TensorFlow model from the specified path.
|
|
func SavedModel(modelPath string, tags []string) (model *tf.SavedModel, err error) {
|
|
log.Infof("tensorflow: loading %s", clean.Log(filepath.Base(modelPath)))
|
|
|
|
if len(tags) == 0 {
|
|
tags = []string{"serve"}
|
|
}
|
|
|
|
return tf.LoadSavedModel(modelPath, tags, nil)
|
|
}
|
|
|
|
// GuessInputAndOutput tries to inspect a loaded saved model to build the
|
|
// ModelInfo struct.
|
|
func GuessInputAndOutput(model *tf.SavedModel) (input *PhotoInput, output *ModelOutput, err error) {
|
|
if model == nil {
|
|
return nil, nil, fmt.Errorf("tensorflow: GuessInputAndOutput received a nil input")
|
|
}
|
|
|
|
modelOps := model.Graph.Operations()
|
|
|
|
for i := range modelOps {
|
|
if strings.HasPrefix(modelOps[i].Type(), "Placeholder") &&
|
|
modelOps[i].NumOutputs() == 1 &&
|
|
modelOps[i].Output(0).Shape().NumDimensions() == 4 {
|
|
|
|
shape := modelOps[i].Output(0).Shape()
|
|
|
|
var comps []ShapeComponent
|
|
switch {
|
|
case shape.Size(3) == ExpectedChannels:
|
|
comps = []ShapeComponent{ShapeBatch, ShapeHeight, ShapeWidth, ShapeColor}
|
|
case shape.Size(1) == ExpectedChannels: // check the channels are 3
|
|
comps = []ShapeComponent{ShapeBatch, ShapeColor, ShapeHeight, ShapeWidth, ShapeColor}
|
|
}
|
|
|
|
if comps != nil {
|
|
input = &PhotoInput{
|
|
Name: modelOps[i].Name(),
|
|
Height: shape.Size(1),
|
|
Width: shape.Size(2),
|
|
Shape: comps,
|
|
}
|
|
}
|
|
} else if (modelOps[i].Type() == "Softmax" || strings.HasPrefix(modelOps[i].Type(), "StatefulPartitionedCall")) &&
|
|
modelOps[i].NumOutputs() == 1 && modelOps[i].Output(0).Shape().NumDimensions() == 2 {
|
|
output = &ModelOutput{
|
|
Name: modelOps[i].Name(),
|
|
NumOutputs: modelOps[i].Output(0).Shape().Size(1),
|
|
}
|
|
}
|
|
|
|
if input != nil && output != nil {
|
|
return
|
|
}
|
|
}
|
|
|
|
return nil, nil, fmt.Errorf("could not guess the inputs and outputs")
|
|
}
|
|
|
|
// GetInputAndOutputFromSavedModel reads signature definitions to derive input/output info.
|
|
func GetInputAndOutputFromSavedModel(model *tf.SavedModel) (*PhotoInput, *ModelOutput, error) {
|
|
if model == nil {
|
|
return nil, nil, fmt.Errorf("GetInputAndOutputFromSavedModel: nil input")
|
|
}
|
|
|
|
log.Debugf("tensorflow: found %d signatures", len(model.Signatures))
|
|
for k, v := range model.Signatures {
|
|
var photoInput *PhotoInput
|
|
var modelOutput *ModelOutput
|
|
|
|
inputs := v.Inputs
|
|
outputs := v.Outputs
|
|
|
|
if len(inputs) >= 1 && len(outputs) >= 1 {
|
|
for _, inputTensor := range inputs {
|
|
if inputTensor.Shape.NumDimensions() == 4 {
|
|
var comps []ShapeComponent
|
|
|
|
switch {
|
|
case inputTensor.Shape.Size(3) == ExpectedChannels:
|
|
comps = []ShapeComponent{ShapeBatch, ShapeHeight, ShapeWidth, ShapeColor}
|
|
case inputTensor.Shape.Size(1) == ExpectedChannels: // check the channels are 3
|
|
comps = []ShapeComponent{ShapeBatch, ShapeColor, ShapeHeight, ShapeWidth}
|
|
default:
|
|
log.Debugf("tensorflow: shape %d", inputTensor.Shape.Size(1))
|
|
}
|
|
|
|
if comps == nil {
|
|
log.Warnf("tensorflow: skipping signature %v because we could not find the color component", k)
|
|
} else {
|
|
inputIdx := 0
|
|
var err error
|
|
|
|
inputName, inputIndex, found := strings.Cut(inputTensor.Name, ":")
|
|
if found {
|
|
inputIdx, err = strconv.Atoi(inputIndex)
|
|
if err != nil {
|
|
return nil, nil, fmt.Errorf("could not parse index %s (%s)", inputIndex, clean.Error(err))
|
|
}
|
|
}
|
|
|
|
photoInput = &PhotoInput{
|
|
Name: inputName,
|
|
OutputIndex: inputIdx,
|
|
Height: inputTensor.Shape.Size(1),
|
|
Width: inputTensor.Shape.Size(2),
|
|
Shape: comps,
|
|
}
|
|
}
|
|
|
|
break
|
|
}
|
|
}
|
|
|
|
for outputVarName, outputTensor := range outputs {
|
|
var err error
|
|
var outputIdx int
|
|
if outputTensor.Shape.NumDimensions() == 2 {
|
|
outputName, outputIndex, found := strings.Cut(outputTensor.Name, ":")
|
|
if found {
|
|
outputIdx, err = strconv.Atoi(outputIndex)
|
|
if err != nil {
|
|
return nil, nil, fmt.Errorf("could not parse index %s (%s)", outputIndex, clean.Error(err))
|
|
}
|
|
}
|
|
|
|
modelOutput = &ModelOutput{
|
|
Name: outputName,
|
|
OutputIndex: outputIdx,
|
|
NumOutputs: outputTensor.Shape.Size(1),
|
|
OutputsLogits: strings.Contains(outputVarName, "logits"),
|
|
}
|
|
break
|
|
}
|
|
}
|
|
}
|
|
|
|
if photoInput != nil && modelOutput != nil {
|
|
return photoInput, modelOutput, nil
|
|
}
|
|
}
|
|
return nil, nil, fmt.Errorf("GetInputAndOutputFromSignature: could not find valid signatures")
|
|
}
|