Files
photoprism/internal/ai/classify/model_external_test.go
2025-11-22 11:30:58 +01:00

515 lines
13 KiB
Go

package classify
import (
"archive/tar"
"compress/gzip"
"fmt"
"io"
"net/http"
"os"
"path"
"path/filepath"
"strings"
"testing"
"github.com/stretchr/testify/assert"
"github.com/photoprism/photoprism/internal/ai/tensorflow"
"github.com/photoprism/photoprism/pkg/fs"
)
const (
DefaultResolution = 224
ExternalModelsTestLabel = "PHOTOPRISM_TEST_EXTERNAL_MODELS"
maxArchiveFileSize = 2 * 1024 * 1024 * 1024 // 2 GiB limit to avoid decompression bombs in tests
)
var baseUrl = "https://dl.photoprism.app/tensorflow/models"
// To avoid downloading everything again and again...
// var baseUrl = "http://host.docker.internal:8000"
type ModelTestCase struct {
Info *tensorflow.ModelInfo
Labels string
}
var modelsInfo = map[string]*ModelTestCase{
"efficientnet-v2-tensorflow2-imagenet1k-b0-classification-v2.tar.gz": {
Info: &tensorflow.ModelInfo{
Output: &tensorflow.ModelOutput{
OutputsLogits: true,
},
},
},
"efficientnet-v2-tensorflow2-imagenet1k-m-classification-v2.tar.gz": {
Info: &tensorflow.ModelInfo{
Input: &tensorflow.PhotoInput{
Height: 480,
Width: 480,
},
Output: &tensorflow.ModelOutput{
OutputsLogits: true,
},
},
},
"efficientnet-v2-tensorflow2-imagenet21k-b0-classification-v1.tar.gz": {
Info: &tensorflow.ModelInfo{
Output: &tensorflow.ModelOutput{
OutputsLogits: true,
},
},
Labels: "labels-imagenet21k.txt",
},
"inception-v3-tensorflow2-classification-v2.tar.gz": {
Info: &tensorflow.ModelInfo{
Input: &tensorflow.PhotoInput{
Height: 299,
Width: 299,
},
Output: &tensorflow.ModelOutput{
OutputsLogits: true,
},
},
},
"resnet-v2-tensorflow2-101-classification-v2.tar.gz": {
Info: &tensorflow.ModelInfo{
Output: &tensorflow.ModelOutput{
OutputsLogits: true,
},
},
},
"resnet-v2-tensorflow2-152-classification-v2.tar.gz": {
Info: &tensorflow.ModelInfo{
Output: &tensorflow.ModelOutput{
OutputsLogits: true,
},
},
},
"vision-transformer-tensorflow2-vit-b16-classification-v1.tar.gz": {
Info: &tensorflow.ModelInfo{
Input: &tensorflow.PhotoInput{
Intervals: []tensorflow.Interval{
{
Start: -1.0,
End: 1.0,
},
},
},
Output: &tensorflow.ModelOutput{
OutputsLogits: true,
},
},
},
/* Not correctly uploaded
"vit-base-patch16-google-250811.tar.gz": {
Info: &tensorflow.ModelInfo{
Output: &tensorflow.ModelOutput{
OutputsLogits: true,
},
},
},
*/
}
func safeArchivePath(baseDir, name string) (string, error) {
cleanName := filepath.Clean(name)
if cleanName == "" || cleanName == "." {
return "", fmt.Errorf("empty archive path")
}
if filepath.IsAbs(cleanName) || filepath.VolumeName(cleanName) != "" {
return "", fmt.Errorf("absolute paths are not allowed")
}
if cleanName == ".." || strings.HasPrefix(cleanName, ".."+string(os.PathSeparator)) {
return "", fmt.Errorf("path traversal detected")
}
target := filepath.Join(baseDir, cleanName) //nolint:gosec // target is validated below
absBase, err := filepath.Abs(baseDir)
if err != nil {
return "", err
}
absTarget, err := filepath.Abs(target)
if err != nil {
return "", err
}
rel, err := filepath.Rel(absBase, absTarget)
if err != nil {
return "", err
}
if rel == ".." || strings.HasPrefix(rel, ".."+string(os.PathSeparator)) {
return "", fmt.Errorf("path escapes base directory")
}
return absTarget, nil
}
func TestExternalModel_AllModels(t *testing.T) {
if os.Getenv(ExternalModelsTestLabel) == "" {
t.Skipf("Skipping external model tests. To test them add set env var %s=true",
ExternalModelsTestLabel)
}
tmpPath, err := os.MkdirTemp("", "*-photoprism")
if err != nil {
t.Fatal(err)
}
defer os.RemoveAll(tmpPath)
for k, v := range modelsInfo {
t.Run(k, func(*testing.T) {
log.Infof("vision: testing model %s", k)
downloadedModel := downloadRemoteModel(t, fmt.Sprintf("%s/%s", baseUrl, k), tmpPath)
log.Infof("vision: model downloaded to %s", downloadedModel)
if v.Labels != "" {
modelPath := filepath.Join(tmpPath, downloadedModel)
t.Logf("vision: model path is %s", modelPath)
downloadLabels(t, fmt.Sprintf("%s/%s", baseUrl, v.Labels), modelPath)
}
model := NewModel(tmpPath, downloadedModel, modelPath, v.Info, false)
if err := model.loadModel(); err != nil {
t.Fatal(err)
}
if model.meta.Input.IsDynamic() {
model.meta.Input.SetResolution(DefaultResolution)
}
testModelLabelsFromFile(t, model)
testModelRun(t, model)
})
}
}
func downloadLabels(t *testing.T, url, dst string) {
resp, err := http.Get(url) //nolint:gosec // test downloads from trusted PhotoPrism asset host
if err != nil {
t.Fatal(err)
}
defer resp.Body.Close()
output, err := os.Create(filepath.Join(dst, "labels.txt")) //nolint:gosec // destination is within a controlled temporary test directory
if err != nil {
t.Fatal(err)
}
defer output.Close()
_, err = io.Copy(output, resp.Body)
if err != nil {
t.Fatal(err)
}
}
func downloadRemoteModel(t *testing.T, url, tmpPath string) (model string) {
t.Logf("Downloading %s to %s", url, tmpPath)
modelPath := strings.TrimSuffix(path.Base(url), ".tar.gz")
tmpPath = filepath.Join(tmpPath, modelPath)
if err := os.MkdirAll(tmpPath, fs.ModeDir); err != nil { //nolint:gosec // fs.ModeDir is the project default for directories
t.Fatal(err)
}
resp, err := http.Get(url) //nolint:gosec // test downloads from trusted PhotoPrism asset host
if err != nil {
t.Fatal(err)
}
defer resp.Body.Close()
if resp.StatusCode < 200 || resp.StatusCode > 299 {
t.Fatalf("Invalid status code for url %s: %d", url, resp.StatusCode)
}
uncompressedBody, err := gzip.NewReader(resp.Body)
if err != nil {
t.Fatal(err)
}
tarReader := tar.NewReader(uncompressedBody)
for {
header, err := tarReader.Next()
if err == io.EOF {
break
}
if err != nil {
t.Fatalf("could not extract the file: %v", err)
}
if strings.HasPrefix(header.Name, "__MACOSX") {
continue
}
target, err := safeArchivePath(tmpPath, header.Name)
if err != nil {
t.Fatalf("The model file contains an invalid path %s: %v", header.Name, err)
}
switch header.Typeflag {
case tar.TypeDir:
if err := os.Mkdir(target, fs.ModeDir); err != nil { //nolint:gosec // fs.ModeDir is intentional for extracted model directories
t.Fatalf("could not make the dir %s: %v", header.Name, err)
}
case tar.TypeReg:
outFile, err := os.Create(target) //nolint:gosec // target path validated by isSafePath and confined to tmpPath
if err != nil {
t.Fatalf("could not create file %s: %v", header.Name, err)
}
limitedReader := &io.LimitedReader{R: tarReader, N: maxArchiveFileSize}
if _, err := io.Copy(outFile, limitedReader); err != nil {
t.Fatalf("could not copy file %s: %v", header.Name, err)
}
if limitedReader.N == 0 {
t.Fatalf("file %s exceeds maximum allowed size of %d bytes", header.Name, maxArchiveFileSize)
}
rootPath, fileName := filepath.Split(header.Name)
if fileName == "saved_model.pb" {
model = filepath.Join(modelPath, rootPath)
}
if err := outFile.Close(); err != nil {
t.Fatalf("could not close file %s: %v", header.Name, err)
}
default:
t.Fatalf("could not extract file. Unknown type %v in %s",
header.Typeflag,
header.Name)
}
}
return
}
func containsAny(s string, substrings []string) bool {
for i := range substrings {
if strings.Contains(s, substrings[i]) {
return true
}
}
return false
}
func assertContainsAny(t *testing.T, s string, substrings []string) {
assert.Truef(t, containsAny(s, substrings),
"The result [%s] does not contain any of %v",
s, substrings)
}
func testModelLabelsFromFile(t *testing.T, tensorFlow *Model) {
testName := func(name string) string {
return fmt.Sprintf("%s/%s", tensorFlow.name, name)
}
t.Run(testName("chameleon_lime.jpg"), func(t *testing.T) {
result, err := tensorFlow.File(examplesPath+"/chameleon_lime.jpg", 10)
assert.NoError(t, err)
assert.NotNil(t, result)
assert.IsType(t, Labels{}, result)
assert.GreaterOrEqual(t, len(result), 1)
if len(result) != 1 {
t.Logf("Expected 1 result, but found %d", len(result))
t.Logf("Results: %#v", result)
}
if len(result) > 0 {
assert.Contains(t, result[0].Name, "chameleon")
// assert.Equal(t, 7, result[0].Uncertainty)
}
})
t.Run(testName("cat_224.jpeg"), func(t *testing.T) {
result, err := tensorFlow.File(examplesPath+"/cat_224.jpeg", 10)
assert.NoError(t, err)
assert.NotNil(t, result)
assert.IsType(t, Labels{}, result)
assert.GreaterOrEqual(t, len(result), 1)
if len(result) != 1 {
t.Logf("Expected 1 result, but found %d", len(result))
t.Logf("Results: %#v", result)
}
if len(result) > 0 {
assertContainsAny(t, result[0].Name, []string{"cat", "kitty"})
}
})
t.Run(testName("cat_720.jpeg"), func(t *testing.T) {
result, err := tensorFlow.File(examplesPath+"/cat_720.jpeg", 10)
assert.NoError(t, err)
assert.NotNil(t, result)
assert.IsType(t, Labels{}, result)
// assert.Equal(t, 3, len(result))
assert.GreaterOrEqual(t, len(result), 1)
// t.Logf("labels: %#v", result)
if len(result) != 3 {
t.Logf("Expected 3 result, but found %d", len(result))
t.Logf("Results: %#v", result)
}
if len(result) > 0 {
assertContainsAny(t, result[0].Name, []string{"cat", "kitty"})
}
})
t.Run(testName("green.jpg"), func(t *testing.T) {
result, err := tensorFlow.File(examplesPath+"/green.jpg", 10)
t.Logf("labels: %#v", result)
assert.NoError(t, err)
assert.NotNil(t, result)
assert.IsType(t, Labels{}, result)
assert.GreaterOrEqual(t, len(result), 1)
if len(result) != 1 {
t.Logf("Expected 1 result, but found %d", len(result))
t.Logf("Results: %#v", result)
}
if len(result) > 0 {
assert.Equal(t, "outdoor", result[0].Name)
}
})
t.Run(testName("not existing file"), func(t *testing.T) {
result, err := tensorFlow.File(examplesPath+"/notexisting.jpg", 10)
assert.Contains(t, err.Error(), "no such file or directory")
assert.Empty(t, result)
})
t.Run(testName("disabled true"), func(t *testing.T) {
tensorFlow.disabled = true
defer func() { tensorFlow.disabled = false }()
result, err := tensorFlow.File(examplesPath+"/chameleon_lime.jpg", 10)
assert.Nil(t, err)
if err != nil {
t.Fatal(err)
}
assert.Nil(t, result)
assert.IsType(t, Labels{}, result)
assert.Equal(t, 0, len(result))
t.Log(result)
})
}
func testModelRun(t *testing.T, tensorFlow *Model) {
if testing.Short() {
t.Skip("skipping test in short mode.")
}
testName := func(name string) string {
return fmt.Sprintf("%s/%s", tensorFlow.name, name)
}
t.Run(testName("chameleon_lime.jpg"), func(t *testing.T) {
if imageBuffer, err := os.ReadFile(examplesPath + "/chameleon_lime.jpg"); err != nil {
t.Error(err)
} else {
result, err := tensorFlow.Run(imageBuffer, 10)
t.Log(result)
assert.NotNil(t, result)
if err != nil {
t.Fatal(err)
}
assert.IsType(t, Labels{}, result)
assert.GreaterOrEqual(t, len(result), 1)
if len(result) != 1 {
t.Logf("Expected 1 result, but found %d", len(result))
t.Logf("Results: %#v", result)
}
if len(result) > 0 {
assert.Contains(t, result[0].Name, "chameleon")
}
}
})
t.Run(testName("dog_orange.jpg"), func(t *testing.T) {
if imageBuffer, err := os.ReadFile(examplesPath + "/dog_orange.jpg"); err != nil {
t.Error(err)
} else {
result, err := tensorFlow.Run(imageBuffer, 10)
t.Log(result)
assert.NotNil(t, result)
if err != nil {
t.Fatal(err)
}
assert.IsType(t, Labels{}, result)
assert.GreaterOrEqual(t, len(result), 1)
if len(result) != 1 {
t.Logf("Expected 1 result, but found %d", len(result))
t.Logf("Results: %#v", result)
}
if len(result) > 0 {
assertContainsAny(t, result[0].Name, []string{"dog", "corgi"})
}
}
})
t.Run(testName("Random.docx"), func(t *testing.T) {
if imageBuffer, err := os.ReadFile(examplesPath + "/Random.docx"); err != nil {
t.Error(err)
} else {
result, err := tensorFlow.Run(imageBuffer, 10)
assert.Empty(t, result)
assert.Error(t, err)
}
})
t.Run(testName("6720px_white.jpg"), func(t *testing.T) {
if imageBuffer, err := os.ReadFile(examplesPath + "/6720px_white.jpg"); err != nil {
t.Error(err)
} else {
result, err := tensorFlow.Run(imageBuffer, 10)
if err != nil {
t.Fatal(err)
}
assert.Empty(t, result)
}
})
t.Run(testName("disabled true"), func(t *testing.T) {
tensorFlow.disabled = true
defer func() { tensorFlow.disabled = false }()
if imageBuffer, err := os.ReadFile(examplesPath + "/dog_orange.jpg"); err != nil {
t.Error(err)
} else {
result, err := tensorFlow.Run(imageBuffer, 10)
t.Log(result)
assert.Nil(t, result)
assert.Nil(t, err)
assert.IsType(t, Labels{}, result)
assert.Equal(t, 0, len(result))
}
})
}