package classify import ( "os" "sync" "testing" "github.com/stretchr/testify/assert" "github.com/photoprism/photoprism/pkg/fs" ) var assetsPath = fs.Abs("../../../assets") var modelPath = assetsPath + "/nasnet" var examplesPath = assetsPath + "/examples" var once sync.Once var testInstance *Model func NewModelTest(t *testing.T) *Model { once.Do(func() { testInstance = NewNasnet(assetsPath, false) if err := testInstance.loadModel(); err != nil { t.Fatal(err) } }) return testInstance } func TestModel_LabelsFromFile(t *testing.T) { t.Run("chameleon_lime.jpg", func(t *testing.T) { tensorFlow := NewModelTest(t) result, err := tensorFlow.File(examplesPath+"/chameleon_lime.jpg", 10) assert.NoError(t, err) assert.NotNil(t, result) assert.IsType(t, Labels{}, result) assert.Equal(t, 1, len(result)) if len(result) > 0 { t.Logf("result: %#v", result[0]) assert.Equal(t, "chameleon", result[0].Name) assert.Equal(t, 7, result[0].Uncertainty) } }) t.Run("cat_224.jpeg", func(t *testing.T) { tensorFlow := NewModelTest(t) result, err := tensorFlow.File(examplesPath+"/cat_224.jpeg", 10) assert.NoError(t, err) assert.NotNil(t, result) assert.IsType(t, Labels{}, result) assert.Equal(t, 1, len(result)) if len(result) > 0 { assert.Equal(t, "cat", result[0].Name) assert.Equal(t, 59, result[0].Uncertainty) } }) t.Run("cat_720.jpeg", func(t *testing.T) { tensorFlow := NewModelTest(t) result, err := tensorFlow.File(examplesPath+"/cat_720.jpeg", 10) assert.NoError(t, err) assert.NotNil(t, result) assert.IsType(t, Labels{}, result) assert.Equal(t, 3, len(result)) // t.Logf("labels: %#v", result) if len(result) > 0 { assert.Equal(t, "cat", result[0].Name) assert.Equal(t, 60, result[0].Uncertainty) } }) t.Run("green.jpg", func(t *testing.T) { tensorFlow := NewModelTest(t) result, err := tensorFlow.File(examplesPath+"/green.jpg", 10) t.Logf("labels: %#v", result) assert.NoError(t, err) assert.NotNil(t, result) assert.IsType(t, Labels{}, result) assert.Equal(t, 1, len(result)) if len(result) > 0 { assert.Equal(t, "outdoor", result[0].Name) assert.Equal(t, 70, result[0].Uncertainty) } }) t.Run("not existing file", func(t *testing.T) { tensorFlow := NewModelTest(t) result, err := tensorFlow.File(examplesPath+"/notexisting.jpg", 10) assert.Contains(t, err.Error(), "no such file or directory") assert.Empty(t, result) }) t.Run("disabled true", func(t *testing.T) { tensorFlow := NewNasnet(assetsPath, true) result, err := tensorFlow.File(examplesPath+"/chameleon_lime.jpg", 10) assert.Nil(t, err) if err != nil { t.Fatal(err) } assert.Nil(t, result) assert.IsType(t, Labels{}, result) assert.Equal(t, 0, len(result)) t.Log(result) }) } func TestModel_Run(t *testing.T) { if testing.Short() { t.Skip("skipping test in short mode.") } t.Run("chameleon_lime.jpg", func(t *testing.T) { tensorFlow := NewModelTest(t) if imageBuffer, err := os.ReadFile(examplesPath + "/chameleon_lime.jpg"); err != nil { t.Error(err) } else { result, err := tensorFlow.Run(imageBuffer, 10) t.Log(result) assert.NotNil(t, result) if err != nil { t.Fatal(err) } assert.IsType(t, Labels{}, result) assert.Equal(t, 1, len(result)) assert.Equal(t, "chameleon", result[0].Name) assert.Equal(t, 100-93, result[0].Uncertainty) } }) t.Run("dog_orange.jpg", func(t *testing.T) { tensorFlow := NewModelTest(t) if imageBuffer, err := os.ReadFile(examplesPath + "/dog_orange.jpg"); err != nil { t.Error(err) } else { result, err := tensorFlow.Run(imageBuffer, 10) t.Log(result) assert.NotNil(t, result) if err != nil { t.Fatal(err) } assert.IsType(t, Labels{}, result) assert.Equal(t, 1, len(result)) assert.Equal(t, "dog", result[0].Name) assert.Equal(t, 34, result[0].Uncertainty) } }) t.Run("Random.docx", func(t *testing.T) { tensorFlow := NewModelTest(t) if imageBuffer, err := os.ReadFile(examplesPath + "/Random.docx"); err != nil { t.Error(err) } else { result, err := tensorFlow.Run(imageBuffer, 10) assert.Empty(t, result) assert.Error(t, err) } }) t.Run("6720px_white.jpg", func(t *testing.T) { tensorFlow := NewModelTest(t) if imageBuffer, err := os.ReadFile(examplesPath + "/6720px_white.jpg"); err != nil { t.Error(err) } else { result, err := tensorFlow.Run(imageBuffer, 10) if err != nil { t.Fatal(err) } assert.Empty(t, result) } }) t.Run("disabled true", func(t *testing.T) { tensorFlow := NewNasnet(assetsPath, true) if imageBuffer, err := os.ReadFile(examplesPath + "/dog_orange.jpg"); err != nil { t.Error(err) } else { result, err := tensorFlow.Run(imageBuffer, 10) t.Log(result) assert.Nil(t, result) assert.Nil(t, err) assert.IsType(t, Labels{}, result) assert.Equal(t, 0, len(result)) } }) } func TestModel_LoadModel(t *testing.T) { t.Run("model loaded", func(t *testing.T) { tf := NewModelTest(t) assert.True(t, tf.ModelLoaded()) }) t.Run("model path does not exist", func(t *testing.T) { tensorFlow := NewNasnet(assetsPath+"foo", false) err := tensorFlow.loadModel() if err != nil { assert.Contains(t, err.Error(), "no such file or directory") } assert.Error(t, err) }) } func TestModel_BestLabels(t *testing.T) { t.Run("labels not loaded", func(t *testing.T) { tensorFlow := NewNasnet(assetsPath, false) p := make([]float32, 1000) p[666] = 0.5 result := tensorFlow.bestLabels(p, 10) assert.Empty(t, result) }) t.Run("labels loaded", func(t *testing.T) { tensorFlow := NewNasnet(assetsPath, false) if err := tensorFlow.loadLabels(modelPath); err != nil { t.Fatal(err) } p := make([]float32, 1000) p[8] = 0.7 p[1] = 0.5 result := tensorFlow.bestLabels(p, 10) assert.Equal(t, "chicken", result[0].Name) assert.Equal(t, "bird", result[0].Categories[0]) assert.Equal(t, "image", result[0].Source) t.Log(result) }) }