Files
akvorado/outlet/flow/decoder/sflow/root.go
Vincent Bernat ac68c5970e inlet: split inlet into new inlet and outlet
This change split the inlet component into a simpler inlet and a new
outlet component. The new inlet component receive flows and put them in
Kafka, unparsed. The outlet component takes them from Kafka and resume
the processing from here (flow parsing, enrichment) and puts them in
ClickHouse.

The main goal is to ensure the inlet does a minimal work to not be late
when processing packets (and restart faster). It also brings some
simplification as the number of knobs to tune everything is reduced: for
inlet, we only need to tune the queue size for UDP, the number of
workers and a few Kafka parameters; for outlet, we need to tune a few
Kafka parameters, the number of workers and a few ClickHouse parameters.

The outlet component features a simple Kafka input component. The core
component becomes just a callback function. There is also a new
ClickHouse component to push data to ClickHouse using the low-level
ch-go library with batch inserts.

This processing has an impact on the internal representation of a
FlowMessage. Previously, it was tailored to dynamically build the
protobuf message to be put in Kafka. Now, it builds the batch request to
be sent to ClickHouse. This makes the FlowMessage structure hides the
content of the next batch request and therefore, it should be reused.
This also changes the way we decode flows as they don't output
FlowMessage anymore, they reuse one that is provided to each worker.

The ClickHouse tables are slightly updated. Instead of using Kafka
engine, the Null engine is used instead.

Fix #1122
2025-07-27 21:44:28 +02:00

134 lines
3.9 KiB
Go

// SPDX-FileCopyrightText: 2022 Tchadel Icard
// SPDX-License-Identifier: AGPL-3.0-only
// Package sflow handles sFlow v5 decoding.
package sflow
import (
"bytes"
"fmt"
"net"
"time"
"github.com/netsampler/goflow2/v2/decoders/sflow"
"akvorado/common/reporter"
"akvorado/common/schema"
"akvorado/outlet/flow/decoder"
)
const (
// interfaceLocal is used for InIf and OutIf when the traffic is
// locally originated or terminated. We need to translate it to 0.
interfaceLocal = 0x3fffffff
// interfaceOutMask is the mask to interpret output interface type
interfaceOutMask = 0xc0000000
// interfaceOutDiscard is used for OutIf when the traffic is discarded
interfaceOutDiscard = 0x40000000
// interfaceOutMultiple is used when there are multiple output interfaces
interfaceOutMultiple = 0x80000000
)
// Decoder contains the state for the sFlow v5 decoder.
type Decoder struct {
r *reporter.Reporter
d decoder.Dependencies
errLogger reporter.Logger
metrics struct {
errors *reporter.CounterVec
stats *reporter.CounterVec
sampleRecordsStatsSum *reporter.CounterVec
sampleStatsSum *reporter.CounterVec
}
}
// New instantiates a new sFlow decoder.
func New(r *reporter.Reporter, dependencies decoder.Dependencies) decoder.Decoder {
nd := &Decoder{
r: r,
d: dependencies,
errLogger: r.Sample(reporter.BurstSampler(30*time.Second, 3)),
}
nd.metrics.errors = nd.r.CounterVec(
reporter.CounterOpts{
Name: "errors_total",
Help: "sFlows processed errors.",
},
[]string{"exporter", "error"},
)
nd.metrics.stats = nd.r.CounterVec(
reporter.CounterOpts{
Name: "flows_total",
Help: "sFlows processed.",
},
[]string{"exporter", "agent", "version"},
)
nd.metrics.sampleRecordsStatsSum = nd.r.CounterVec(
reporter.CounterOpts{
Name: "sample_records_sum",
Help: "sFlows samples sum of records.",
},
[]string{"exporter", "agent", "version", "type"},
)
nd.metrics.sampleStatsSum = nd.r.CounterVec(
reporter.CounterOpts{
Name: "sample_sum",
Help: "sFlows samples sum.",
},
[]string{"exporter", "agent", "version", "type"},
)
return nd
}
// Decode decodes an sFlow payload.
func (nd *Decoder) Decode(in decoder.RawFlow, _ decoder.Option, bf *schema.FlowMessage, finalize decoder.FinalizeFlowFunc) (int, error) {
buf := bytes.NewBuffer(in.Payload)
key := in.Source.String()
ts := uint64(in.TimeReceived.UTC().Unix())
var packet sflow.Packet
if err := sflow.DecodeMessageVersion(buf, &packet); err != nil {
nd.metrics.errors.WithLabelValues(key, "sFlow decoding error").Inc()
nd.errLogger.Err(err).Str("exporter", key).Msg("error while decoding sFlow")
return 0, fmt.Errorf("error while decoding sFlow: %w", err)
}
// Update some stats
agent := net.IP(packet.AgentIP).String()
version := "5"
samples := packet.Samples
nd.metrics.stats.WithLabelValues(key, agent, version).Inc()
for _, s := range samples {
switch sConv := s.(type) {
case sflow.FlowSample:
nd.metrics.sampleStatsSum.WithLabelValues(key, agent, version, "FlowSample").
Inc()
nd.metrics.sampleRecordsStatsSum.WithLabelValues(key, agent, version, "FlowSample").
Add(float64(len(sConv.Records)))
case sflow.ExpandedFlowSample:
nd.metrics.sampleStatsSum.WithLabelValues(key, agent, version, "ExpandedFlowSample").
Inc()
nd.metrics.sampleRecordsStatsSum.WithLabelValues(key, agent, version, "ExpandedFlowSample").
Add(float64(len(sConv.Records)))
case sflow.CounterSample:
nd.metrics.sampleStatsSum.WithLabelValues(key, agent, version, "CounterSample").
Inc()
nd.metrics.sampleRecordsStatsSum.WithLabelValues(key, agent, version, "CounterSample").
Add(float64(len(sConv.Records)))
}
}
return len(samples), nd.decode(packet, bf, func() {
bf.TimeReceived = uint32(ts)
finalize()
})
}
// Name returns the name of the decoder.
func (nd *Decoder) Name() string {
return "sflow"
}