Files
akvorado/console/clickhouse.go
Vincent Bernat d5cde97891 console: add “%” to available units
This is useful to detect interfaces that are close to saturation
quickly. It would usually require to group by exporter name and
interface name and it may not make sense for some graph types (like
stacked 100%). It is useful with Lines and Grid.
2023-02-09 21:14:36 +01:00

282 lines
8.7 KiB
Go

// SPDX-FileCopyrightText: 2022 Free Mobile
// SPDX-License-Identifier: AGPL-3.0-only
package console
import (
"bytes"
"encoding/json"
"errors"
"fmt"
"sort"
"strings"
"text/template"
"time"
"akvorado/console/query"
)
// flowsTable describe a consolidated or unconsolidated flows table.
type flowsTable struct {
Name string
Resolution time.Duration
Oldest time.Time
}
// refreshFlowsTables refreshes the information we have about flows
// tables (live one and consolidated ones). This information includes
// the consolidation interval and the oldest available data.
func (c *Component) refreshFlowsTables() error {
ctx := c.t.Context(nil)
var tables []struct {
Name string `ch:"name"`
}
err := c.d.ClickHouseDB.Select(ctx, &tables, `
SELECT name
FROM system.tables
WHERE database=currentDatabase()
AND table LIKE 'flows%'
AND engine LIKE '%MergeTree'
`)
if err != nil {
return fmt.Errorf("cannot query flows table metadata: %w", err)
}
newFlowsTables := []flowsTable{}
for _, table := range tables {
// Parse resolution
resolution := time.Duration(0)
if strings.HasPrefix(table.Name, "flows_") {
var err error
resolution, err = time.ParseDuration(strings.TrimPrefix(table.Name, "flows_"))
if err != nil {
c.r.Err(err).Msgf("cannot parse duration for table %s", table.Name)
continue
}
}
// Get oldest timestamp
var oldest []struct {
T time.Time `ch:"t"`
}
err := c.d.ClickHouseDB.Conn.Select(ctx, &oldest,
fmt.Sprintf(`SELECT MIN(TimeReceived) AS t FROM %s`, table.Name))
if err != nil {
return fmt.Errorf("cannot query table %s for oldest timestamp: %w", table.Name, err)
}
newFlowsTables = append(newFlowsTables, flowsTable{
Name: table.Name,
Resolution: resolution,
Oldest: oldest[0].T,
})
}
if len(newFlowsTables) == 0 {
return errors.New("no flows table present (yet?)")
}
c.flowsTablesLock.Lock()
c.flowsTables = newFlowsTables
c.flowsTablesLock.Unlock()
return nil
}
// finalizeQuery builds the finalized query. A single "context"
// function is provided to return a `Context` struct with all the
// information needed.
func (c *Component) finalizeQuery(query string) string {
t := template.Must(template.New("query").
Funcs(template.FuncMap{
"context": c.contextFunc,
}).
Option("missingkey=error").
Parse(strings.TrimSpace(query)))
buf := bytes.NewBufferString("")
if err := t.Execute(buf, nil); err != nil {
c.r.Err(err).Str("query", query).Msg("invalid query")
panic(err)
}
return buf.String()
}
type inputContext struct {
Start time.Time `json:"start"`
End time.Time `json:"end"`
StartForInterval *time.Time `json:"start-for-interval,omitempty"`
MainTableRequired bool `json:"main-table-required,omitempty"`
Points uint `json:"points"`
Units string `json:"units,omitempty"`
}
type context struct {
Table string
Timefilter string
TimefilterStart string
TimefilterEnd string
Units string
Interval uint64
ToStartOfInterval func(string) string
}
// templateEscape escapes `{{` and `}}` from a string. In fact, only
// the opening tag needs to be escaped.
func templateEscape(input string) string {
return strings.ReplaceAll(input, `{{`, `{{"{{"}}`)
}
// templateWhere transforms a filter to a WHERE clause
func templateWhere(qf query.Filter) string {
if qf.Direct() == "" {
return `{{ .Timefilter }}`
}
return fmt.Sprintf(`{{ .Timefilter }} AND (%s)`, templateEscape(qf.Direct()))
}
// templateTable builds a template directive to select the right table
func templateContext(context inputContext) string {
encoded, err := json.Marshal(context)
if err != nil {
panic(err)
}
return fmt.Sprintf("context `%s`", string(encoded))
}
func (c *Component) contextFunc(inputStr string) context {
var input inputContext
if err := json.Unmarshal([]byte(inputStr), &input); err != nil {
panic(err)
}
targetInterval := time.Duration(uint64(input.End.Sub(input.Start)) / uint64(input.Points))
if targetInterval < time.Second {
targetInterval = time.Second
}
// Select table
targetIntervalForTableSelection := targetInterval
if input.MainTableRequired {
targetIntervalForTableSelection = time.Second
}
table, computedInterval := c.getBestTable(input.Start, targetIntervalForTableSelection)
if input.StartForInterval != nil {
_, computedInterval = c.getBestTable(*input.StartForInterval, targetIntervalForTableSelection)
}
// Make start/end match the computed interval (currently equal to the table resolution)
start := input.Start.Truncate(computedInterval)
end := input.End.Truncate(computedInterval)
// Adapt the computed interval to match the target one more closely
if targetInterval > computedInterval {
computedInterval = targetInterval.Truncate(computedInterval)
}
// Adapt end to ensure we get a full interval
end = start.Add(end.Sub(start).Truncate(computedInterval))
// Now, toStartOfInterval will provide an incorrect value. We
// compute a correction offset. Go's truncate seems to
// be different from what we expect.
computedIntervalOffset := start.UTC().Sub(
time.Unix(start.UTC().Unix()/
int64(computedInterval.Seconds())*
int64(computedInterval.Seconds()), 0))
diffOffset := uint64(computedInterval.Seconds()) - uint64(computedIntervalOffset.Seconds())
// Compute all strings
timefilterStart := fmt.Sprintf(`toDateTime('%s', 'UTC')`, start.UTC().Format("2006-01-02 15:04:05"))
timefilterEnd := fmt.Sprintf(`toDateTime('%s', 'UTC')`, end.UTC().Format("2006-01-02 15:04:05"))
timefilter := fmt.Sprintf(`TimeReceived BETWEEN %s AND %s`, timefilterStart, timefilterEnd)
var units string
switch input.Units {
case "pps":
units = `SUM(Packets*SamplingRate)`
case "l3bps":
units = `SUM(Bytes*SamplingRate*8)`
case "l2bps":
// For each packet, we add the Ethernet header (14 bytes), the CRC (4
// bytes), the preamble and start frame delimiter (8 bytes) and the IPG
// (~ 12 bytes). We don't include the VLAN header (4 bytes) as it is
// often not used with external entities. Both sFlow and IPFIX may have
// a better view of that, but we don't collect it yet.
units = `SUM((Bytes+38*Packets)*SamplingRate*8)`
case "inl2%":
// That's like l2bps, but this time we use the interface speed to get a
// percent value
units = `SUM((Bytes+38*Packets)*SamplingRate*8*100/(InIfSpeed*1000000))/COUNT(DISTINCT ExporterName, InIfName)`
case "outl2%":
// Same but using output interface as reference
units = `SUM((Bytes+38*Packets)*SamplingRate*8*100/(OutIfSpeed*1000000))/COUNT(DISTINCT ExporterName, OutIfName)`
}
c.metrics.clickhouseQueries.WithLabelValues(table).Inc()
return context{
Table: table,
Timefilter: timefilter,
TimefilterStart: timefilterStart,
TimefilterEnd: timefilterEnd,
Units: units,
Interval: uint64(computedInterval.Seconds()),
ToStartOfInterval: func(field string) string {
return fmt.Sprintf(
`toStartOfInterval(%s + INTERVAL %d second, INTERVAL %d second) - INTERVAL %d second`,
field,
diffOffset,
uint64(computedInterval.Seconds()),
diffOffset)
},
}
}
// Get the best table starting at the specified time.
func (c *Component) getBestTable(start time.Time, targetInterval time.Duration) (string, time.Duration) {
c.flowsTablesLock.RLock()
defer c.flowsTablesLock.RUnlock()
table := "flows"
computedInterval := time.Second
if len(c.flowsTables) > 0 {
// We can use the consolidated data. The first
// criteria is to find the tables matching the time
// criteria.
candidates := []int{}
for idx, table := range c.flowsTables {
if start.After(table.Oldest.Add(table.Resolution)) {
candidates = append(candidates, idx)
}
}
if len(candidates) == 0 {
// No candidate, fallback to the one with oldest data
best := 0
for idx, table := range c.flowsTables {
if c.flowsTables[best].Oldest.After(table.Oldest.Add(table.Resolution)) {
best = idx
}
}
candidates = []int{best}
// Add other candidates that are not far off in term of oldest data
for idx, table := range c.flowsTables {
if idx == best {
continue
}
if c.flowsTables[best].Oldest.After(table.Oldest) {
candidates = append(candidates, idx)
}
}
}
sort.Slice(candidates, func(i, j int) bool {
return c.flowsTables[candidates[i]].Resolution < c.flowsTables[candidates[j]].Resolution
})
// If possible, use the first resolution before the target interval
for len(candidates) > 1 {
if c.flowsTables[candidates[1]].Resolution < targetInterval {
candidates = candidates[1:]
} else {
break
}
}
table = c.flowsTables[candidates[0]].Name
computedInterval = c.flowsTables[candidates[0]].Resolution
}
if computedInterval < time.Second {
computedInterval = time.Second
}
return table, computedInterval
}