Files
akvorado/console/clickhouse.go
Vincent Bernat ec3c6e8ffa console: ensure main table is used when required even when no data
The user will get empty data, it may be better than an empty table. Add
more tests as well.

Fix #1935
2025-09-04 14:54:26 +02:00

286 lines
9.1 KiB
Go

// SPDX-FileCopyrightText: 2022 Free Mobile
// SPDX-License-Identifier: AGPL-3.0-only
package console
import (
"bytes"
"errors"
"fmt"
"sort"
"strings"
"text/template"
"time"
"akvorado/console/query"
)
// flowsTable describe a consolidated or unconsolidated flows table.
type flowsTable struct {
Name string
Resolution time.Duration
Oldest time.Time
}
// refreshFlowsTables refreshes the information we have about flows
// tables (live one and consolidated ones). This information includes
// the consolidation interval and the oldest available data.
func (c *Component) refreshFlowsTables() error {
ctx := c.t.Context(nil)
var tables []struct {
Name string `ch:"name"`
}
err := c.d.ClickHouseDB.Select(ctx, &tables, `
SELECT name
FROM system.tables
WHERE database=currentDatabase()
AND table LIKE 'flows%'
AND table NOT LIKE '%_local'
AND table != 'flows_raw_errors'
AND (engine LIKE '%MergeTree' OR engine = 'Distributed')
`)
if err != nil {
return fmt.Errorf("cannot query flows table metadata: %w", err)
}
newFlowsTables := []flowsTable{}
for _, table := range tables {
// Parse resolution
resolution := time.Duration(0)
if strings.HasPrefix(table.Name, "flows_") {
var err error
resolution, err = time.ParseDuration(strings.TrimPrefix(table.Name, "flows_"))
if err != nil {
c.r.Err(err).Msgf("cannot parse duration for table %s", table.Name)
continue
}
}
// Get oldest timestamp
var oldest []struct {
T time.Time `ch:"t"`
}
err := c.d.ClickHouseDB.Conn.Select(ctx, &oldest,
fmt.Sprintf(`SELECT MIN(TimeReceived) AS t FROM %s`, table.Name))
if err != nil {
return fmt.Errorf("cannot query table %s for oldest timestamp: %w", table.Name, err)
}
newFlowsTables = append(newFlowsTables, flowsTable{
Name: table.Name,
Resolution: resolution,
Oldest: oldest[0].T,
})
}
if len(newFlowsTables) == 0 {
return errors.New("no flows table present (yet?)")
}
c.flowsTablesLock.Lock()
c.flowsTables = newFlowsTables
c.flowsTablesLock.Unlock()
return nil
}
// inputContext is the intermeidate context provided by the input handler.
type inputContext struct {
Start time.Time
End time.Time
StartForTableSelection *time.Time
MainTableRequired bool
Points uint
Units string
}
// context is the context to finalize the template.
type context struct {
Table string
Timefilter string
TimefilterStart string
TimefilterEnd string
Units string
Interval uint64
ToStartOfInterval func(string) string
}
// templateQuery holds a template string and its associated input context.
type templateQuery struct {
Template string
Context inputContext
}
// templateEscape escapes `{{` and `}}` from a string. In fact, only
// the opening tag needs to be escaped.
func templateEscape(input string) string {
return strings.ReplaceAll(input, `{{`, `{{"{{"}}`)
}
// templateWhere transforms a filter to a WHERE clause
func templateWhere(qf query.Filter) string {
if qf.Direct() == "" {
return `{{ .Timefilter }}`
}
return fmt.Sprintf(`{{ .Timefilter }} AND (%s)`, templateEscape(qf.Direct()))
}
// finalizeTemplateQueries builds the finalized queries from a list of templateQuery.
// Each template is processed with its associated context and combined with UNION ALL.
func (c *Component) finalizeTemplateQueries(queries []templateQuery) string {
parts := make([]string, len(queries))
for i, q := range queries {
parts[i] = c.finalizeTemplateQuery(q)
}
return strings.Join(parts, "\nUNION ALL\n")
}
// finalizeTemplateQuery builds the finalized query for a single templateQuery
func (c *Component) finalizeTemplateQuery(query templateQuery) string {
input := query.Context
table, computedInterval, targetInterval := c.computeTableAndInterval(query.Context)
// Make start/end match the computed interval (currently equal to the table resolution)
start := input.Start.Truncate(computedInterval)
end := input.End.Truncate(computedInterval)
// Adapt the computed interval to match the target one more closely
if targetInterval > computedInterval {
computedInterval = targetInterval.Truncate(computedInterval)
}
// Adapt end to ensure we get a full interval
end = start.Add(end.Sub(start).Truncate(computedInterval))
// Now, toStartOfInterval will provide an incorrect value. We
// compute a correction offset. Go's truncate seems to
// be different from what we expect.
computedIntervalOffset := start.UTC().Sub(
time.Unix(start.UTC().Unix()/
int64(computedInterval.Seconds())*
int64(computedInterval.Seconds()), 0))
diffOffset := uint64(computedInterval.Seconds()) - uint64(computedIntervalOffset.Seconds())
// Compute all strings
timefilterStart := fmt.Sprintf(`toDateTime('%s', 'UTC')`, start.UTC().Format("2006-01-02 15:04:05"))
timefilterEnd := fmt.Sprintf(`toDateTime('%s', 'UTC')`, end.UTC().Format("2006-01-02 15:04:05"))
timefilter := fmt.Sprintf(`TimeReceived BETWEEN %s AND %s`, timefilterStart, timefilterEnd)
var units string
switch input.Units {
case "pps":
units = `SUM(Packets*SamplingRate)`
case "l3bps":
units = `SUM(Bytes*SamplingRate*8)`
case "l2bps":
// For each packet, we add the Ethernet header (14 bytes), the FCS (4
// bytes), the preamble and start frame delimiter (8 bytes) and the IPG
// (~ 12 bytes). We don't include the VLAN header (4 bytes) as it is
// often not used with external entities. Both sFlow and IPFIX may have
// a better view of that, but we don't collect it yet.
units = `SUM((Bytes+38*Packets)*SamplingRate*8)`
case "inl2%":
// That's like l2bps, but this time we use the interface speed to get a
// percent value
units = `ifNotFinite(SUM((Bytes+38*Packets)*SamplingRate*8*100/(InIfSpeed*1000000))/COUNT(DISTINCT ExporterAddress, InIfName),0)`
case "outl2%":
// Same but using output interface as reference
units = `ifNotFinite(SUM((Bytes+38*Packets)*SamplingRate*8*100/(OutIfSpeed*1000000))/COUNT(DISTINCT ExporterAddress, OutIfName),0)`
}
c.metrics.clickhouseQueries.WithLabelValues(table).Inc()
context := context{
Table: table,
Timefilter: timefilter,
TimefilterStart: timefilterStart,
TimefilterEnd: timefilterEnd,
Units: units,
Interval: uint64(computedInterval.Seconds()),
ToStartOfInterval: func(field string) string {
return fmt.Sprintf(
`toStartOfInterval(%s + INTERVAL %d second, INTERVAL %d second) - INTERVAL %d second`,
field,
diffOffset,
uint64(computedInterval.Seconds()),
diffOffset)
},
}
t := template.Must(template.New("query").
Option("missingkey=error").
Parse(strings.TrimSpace(query.Template)))
buf := bytes.NewBufferString("")
if err := t.Execute(buf, context); err != nil {
c.r.Err(err).Str("query", query.Template).Msg("invalid query")
panic(err)
}
return buf.String()
}
func (c *Component) computeTableAndInterval(input inputContext) (string, time.Duration, time.Duration) {
targetInterval := time.Duration(uint64(input.End.Sub(input.Start)) / uint64(input.Points))
targetInterval = max(targetInterval, time.Second)
// Select table
targetIntervalForTableSelection := targetInterval
if input.MainTableRequired {
return "flows", time.Second, targetInterval
}
startForTableSelection := input.Start
if input.StartForTableSelection != nil {
startForTableSelection = *input.StartForTableSelection
}
table, computedInterval := c.getBestTable(startForTableSelection, targetIntervalForTableSelection)
return table, computedInterval, targetInterval
}
// Get the best table starting at the specified time.
func (c *Component) getBestTable(start time.Time, targetInterval time.Duration) (string, time.Duration) {
c.flowsTablesLock.RLock()
defer c.flowsTablesLock.RUnlock()
table := "flows"
computedInterval := time.Second
if len(c.flowsTables) > 0 {
// We can use the consolidated data. The first
// criteria is to find the tables matching the time
// criteria.
candidates := []int{}
for idx, table := range c.flowsTables {
if start.After(table.Oldest.Add(table.Resolution)) {
candidates = append(candidates, idx)
}
}
if len(candidates) == 0 {
// No candidate, fallback to the one with oldest data
best := 0
for idx, table := range c.flowsTables {
if c.flowsTables[best].Oldest.After(table.Oldest.Add(table.Resolution)) {
best = idx
}
}
candidates = []int{best}
// Add other candidates that are not far off in term of oldest data
for idx, table := range c.flowsTables {
if idx == best {
continue
}
if c.flowsTables[best].Oldest.After(table.Oldest) {
candidates = append(candidates, idx)
}
}
}
sort.Slice(candidates, func(i, j int) bool {
return c.flowsTables[candidates[i]].Resolution < c.flowsTables[candidates[j]].Resolution
})
// If possible, use the first resolution before the target interval
for len(candidates) > 1 {
if c.flowsTables[candidates[1]].Resolution <= targetInterval {
candidates = candidates[1:]
} else {
break
}
}
table = c.flowsTables[candidates[0]].Name
computedInterval = c.flowsTables[candidates[0]].Resolution
}
if computedInterval < time.Second {
computedInterval = time.Second
}
return table, computedInterval
}